Chapter 8 An Introduction to Quantum Computing and the Deutsch Algorithm: A Mathematical Tour

The problem setting

I order to design quantum algorithms we need to know how to execute functions on a quantum computer. In particular, we are interested in functions that take a (binary) number, and output a truth value (i.e., \({0, 1}\). That is, functions of the form \(f : {0, 1}n → {0, 1}\)

Let us consider the following problem: There is a univariate function \(f\), defined over the binary alphabet \(0,1,\) with output range in the same alphabet \(0,1\). I.e., \(f:\{0,1\}\rightarrow \{0,1\}\).

We are given a function:
\[f : \{0,1\} \to \{0,1\}\]

Our goal is to determine whether f is:
- Constant: \(f(0) = f(1)\) (same output for both inputs)?
- Balanced: \(f(0) \neq f(1)\) (different outputs for each input)?

Classical Solution

Classical Algorithm for the Deutsch Problem (\(n = 1\))

Algorithm 1: Classical Algorithm for the Deutsch Problem (\(n = 1\))

Require: A black-box function \(f : {0,1} → {0,1}\)

  1. Evaluate: Compute \(f(0)\) and \(f(1)\).
  2. if \(f(0) = f(1)\) then
    • Output: “Constant”
  3. else
    • Output: “Balanced”
  4. end if

Explanation

  • Line 1: Input is a black-box function \(f : {0,1} → {0,1}\).
  • Line 2: Evaluate the function at both possible inputs (0 and 1).
  • Line 3–6: Compare the outputs:
    • If \(f(0) = f(1)\), then the function is constant.
    • If \(f(0) \neq f(1)\), then the function is balanced.

Classical Algorithm for the Deutsch Problem (General Case)

Suppose we are given a black-box function:
\[f : \{0,1\}ⁿ → \{0,1\}\]

The function \(f\) is promised to be either:
- Constant: The output is the same for all inputs.
\(f(x) = f(y), \forall x, y ∈ {0,1}ⁿ\)
- Balanced: The output is \(0\) for exactly half the inputs and \(1\) for the other half.
\[ | \{x ∈ {0,1}ⁿ : f(x) = 0 \} | = 2ⁿ⁻¹ \]
\[ | \{x ∈ {0,1}ⁿ : f(x) = 1 \} | = 2ⁿ⁻¹ \]

Goal: Determine whether \(f\) is constant or balanced using the fewest possible queries (function evaluations).

Quantum Computing: A High-Level Interpretation

The Process of Computing

Key Idea: Computing is about encoding information and transforming it under the rules of physics.

Classical Computing - Data Encoding: Information stored as bits (0s and 1s).
- Processing: Logical gates manipulate bits according to classical physics.

Quantum Computing - Data Encoding: Information stored in quantum states.
- Processing: Quantum operations transform qubits according to quantum mechanics.
- Information Extraction: Quantum measurement provides probabilistic (in general) information and collapses the quantum state.

The Quantum Twist – A New Way to Compute

Qubits vs. Bits

  • Classical Bit: A classical bit is either 0 or 1.
  • Qubit:
    • A qubit is the quantum version of a bit and behaves differently.
    • A qubit can exist in a state of superposition (a combination of 0 and 1).
    • Qubits in a superposition state exhibit quantum interference.
    • Multiple qubits can entangle, linking in special ways.
    • Measurement affects the outcome!

Takeaway
- The challenge and goal is to harness quantum properties for efficient computation.
- Quantum computing isn’t just “faster,” it’s a fundamentally different way to compute!

Mathematical Background and Notations

Complex Hilbert Space \(\mathbb{C}^2\)

  • Let \(\mathbb{C}^2\) be the set of all \(2 \times 1\) complex vectors:
    \[ \mathbb{C}^2 = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : a, b \in \mathbb{C} \right\}. \]

  • Dirac Notation (Ket):
    \[ |v\rangle = \begin{bmatrix} a \\ b \end{bmatrix} .\]

  • Inner Product:
    The standard inner product on \(\mathbb{C}^2\) is the function \(\langle \cdot|\cdot \rangle :\mathbb{C}^2\to\mathbb{C}\) defined by: \[ \langle v|w\rangle = \overline{a}c + \overline{b}d \] for all \(|v\rangle = \begin{bmatrix} a \\ b \end{bmatrix}\) and \(|w\rangle = \begin{bmatrix} c \\ d \end{bmatrix}\).

  • Norm:
    \(\| |v\rangle \| = \sqrt{\langle v|v\rangle }\).

Properties and Terminologies

  1. Inner Product Properties:

    • Conjugate linear in the first entry:
      \[ \langle v + \lambda v'|w\rangle = \langle v|w\rangle + \overline{\lambda}\langle v'|w\rangle .\]
    • Linear in the second entry:
      \[ \langle v|w + \lambda w'\rangle = \langle v|w\rangle + \lambda\langle v|w'\rangle .\]
  2. Orthogonality:
    Vectors \(|v\rangle , |w\rangle ∈ \mathbb{C}^2\) are orthogonal if \(\langle v|w\rangle = 0\).

  3. Orthonormal Basis:
    A set of vectors \(\{|e_1\rangle , |e_2\rangle \}\) is an orthonormal basis if \[ \langle e_i|e_j\rangle = δ_{ij}= \begin{cases} 1 & \text{ if } i \neq j\\ 0 & \text{ if } i = j\ \end{cases}.\]
    For any \(|v\rangle ∈ \mathbb{C}^2\), \[ |v\rangle = a|e_1\rangle + b|e_2\rangle , \] for some \(a,b \in \mathbb{C}^2\) and moreover \(a = \langle e_1|v\rangle\) and \(b = \langle e_2|v\rangle\).

Example 8.1 (Orthonormal Basis)

  1. Standard Basis:
    \(|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}\), \(|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\).

  2. Hadamard Basis:
    \(|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle )\), \(|−\rangle = \frac{1}{\sqrt{2}}(|0\rangle − |1\rangle )\).

  • Consider \(|w\rangle = \begin{bmatrix}1 \\ 2 \end{bmatrix}\), and now if \(\langle +|w\rangle = x\), \(\langle −|w\rangle = y\), then \[ |w\rangle = x|+\rangle + y|−\rangle .\]

Matrices as Linear Operators

  • A \(2 \times 2\) complex matrix \(A\) acts on \(\mathbb{C}^2\) as a linear operator via multiplication:
    \[ A|v\rangle = |w\rangle .\]

  • Properties:

    • Linearity:
      • \(A(|v\rangle + |w\rangle ) = A|v\rangle + A|w\rangle\),
      • \(A(c|v\rangle ) = cA|v\rangle\) (for scalar \(c\)).
  • Hermitian Adjoint (Conjugate Transpose):
    Given \[ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} ,\]
    \[ A^\dagger = \begin{bmatrix} \overline{a} & \overline{c} \\ \overline{b} & \overline{d} \end{bmatrix}. \]

Types of Matrices Considered in Quantum Computing

  1. Self-Adjoint Matrix: \(H^\dagger = H\).
    Example:
    \(H = \begin{bmatrix} 2 & i \\ -i & 3 \end{bmatrix}\).

  2. Unitary Matrix: \(U^\dagger U = UU^\dagger = I\).
    Example:
    \(U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}\),
    \(U^\dagger = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}\).Then, \[U U^\dagger= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}=I\]

  3. Projection Matrix: \(P^2 = P\) and \(P^\dagger = P\).
    Example:
    \(P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\).
    Then, \[ P^2=\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}=P \] and, \[ P^\dagger=\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}=P \] Thus, \(P\) is projection

Linear Functionals and Bra Notation

Definition 8.1 A linear functional is a map \(f : \mathbb{C}^2 → \mathbb{C}\) satisfying:
\[ f(α|v\rangle + |w\rangle ) = αf(|v\rangle ) + f(|w\rangle ). \]

Definition 8.2 \(\{f : \mathbb{C}^2 →\mathbb{C}: f is linear\}\) is called the dual space of \(\mathbb{C}^2\).

  • Bra Notation:
    Each \(|w\rangle ∈ \mathbb{C}^2\) has an associated bra \(\langle w|\), defined as:
    \(|v\rangle → \langle w|v\rangle\) for all \(|v\rangle ∈ \mathbb{C}^2\).

Example 8.2 If \(|+\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}\), its corresponding bra is:
\[ \langle +| = \frac{1}{\sqrt{2}} (1, 1) .\]

Outer Product and Projection Operators

  • Outer Product:
    Given \(|ϕ\rangle , |ψ\rangle ∈ \mathbb{C}^2\), the outer product \(|ϕ\rangle \langle ψ|\) is the operator defined by:
    \[ (|ϕ\rangle \langle ψ|)|v\rangle = \langle ψ|v\rangle |ϕ\rangle.\]

    In matrix form, if \(|ϕ\rangle = \begin{bmatrix} a \\ b \end{bmatrix}\), \(|ψ\rangle = \begin{bmatrix} c \\ d \end{bmatrix}\):
    \[ |ϕ\rangle \langle ψ| = \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} \overline{c} & \overline{d} \end{bmatrix} = \begin{bmatrix} a\overline{c} & a\overline{d} \\ b\overline{c} & b\overline{d} \end{bmatrix} .\]

  • Projection:
    If \(|ϕ\rangle = |ψ\rangle\), we get a projection:
    \(P = |ψ\rangle \langle ψ|\), satisfying \(P^2 = P\).

````{example} For the plus state \(|+\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}\):
\(|+\rangle \langle +| = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\).

  • Outer Product: When taking the outer product of a ket with the bra of itself (i.e., \(|\phi\rangle = |\psi\rangle\)), the result is a projection on the space spanned by the vector.

    \[ P = |\psi\rangle \langle \psi|\text{ This satisfies: } P^2 = P \]

Example 8.3 For \(|+\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}\),

\[ |+\rangle \langle +| = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \]

Takeaways: 1. Outer products generalize linear maps of rank one. 2. Special case: \(|\psi\rangle \langle \psi|\) defines a one-dimensional projection operator. 3. Projections play a fundamental role in the mathematical formulation of quantum measurements.


Qubits: Data in Quantum Computing

Intuitive Notion: - Classical Computing: Bits encode information as \(0\) or \(1\). - Quantum Computing: Qubits encode information as a superposition of \(0\) and \(1\), enabling the processing of multiple possibilities simultaneously.

Mathematical Definition: A qubit is a unit vector in \(\mathbb{C}^2\): \[ |\psi\rangle = \alpha|0\rangle + \beta|1\rangle, \quad \alpha, \beta \in \mathbb{C}, \quad |\alpha|^2 + |\beta|^2 = 1 \]

Where: - \(|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}\) - \(|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\)

Why Unit Vectors?

A Probabilistic System: - A qubit represents a superposition of classical outcomes. - Measurement outcomes are probabilistic, not deterministic.

Normalization Condition: Probabilities must sum to \(1\). For a qubit: \[ |\alpha|^2 + |\beta|^2 = 1 \]

The Born Rule:

  • Upon measurement:

\[(\text{Pr}(\text{Outcome } |0\rangle) = |\alpha|^2\)~,~ (\text{Pr}(\text{Outcome } |1\rangle) = |\beta|^2\]

The qubit collapses to the observed basis state with these probabilitie

Bloch Sphere Representation of Qubit States

  • A general single-qubit state is a unit vector in \(\mathbb{C}^2\): \[ |ψ\rangle = α|0\rangle+β|\rangle\], where \(α,β ∈\mathbb{C}, |α|^2 +|β|^2 = 1.\)
  • Any such state can be written in the form: \[ |\psi\rangle = \cos\frac{\theta}{2} |0\rangle + e^{i\phi} \sin\frac{\theta}{2} |1\rangle \]

Where:

  • \(\theta \in [0, \pi]\): Weight of \(|0\rangle\) and \(|1\rangle\)

  • \(\phi \in [0, 2\pi)\): Relative phase between \(|0\rangle\) and \(|1\rangle\)

  • The angles \((θ,ϕ)\) define a unique point on the unit sphere in \(\mathbb{R}^3.\)

The state \(|\psi\rangle\) maps to a point \(\mathbf{r}\) on the unit sphere: \[ \mathbf{r} = (\langle \sigma_x \rangle, \langle \sigma_y \rangle, \langle \sigma_z \rangle) \]

Where:

  • \(\langle \sigma_x \rangle = \sin\theta \cos\phi\)
  • \(\langle \sigma_y \rangle = \sin\theta \sin\phi\)
  • \(\langle \sigma_z \rangle = \cos\theta\)

This defines a one-to-one correspondence between quantum states (up to a global phase) (\(e^{i\gamma}|\psi\)) and points on the unit sphere.

Remark. The global phase does not change the Bloch sphere representation. That is, states differing by a global phase represent the same physical qubit state.

source: Wikipedia
source: Wikipedia

Quantum Gates: Processing Quantum Data

Classical vs. Quantum: - Classical Gates: Perform logical operations (e.g., AND, OR, NOT). - Quantum Gates: Perform transformations on qubits using unitary operations.

Why Unitary Matrices? - Reversible: Quantum mechanics laws are reversible. - Norm-Preserving: Probabilities must sum to \(1\).

Definition 8.3 A quantum gate is a \(2 \times 2\) unitary matrix \(U\) satisfying: \[ U^\dagger U = I \]

Here’s the updated table with two columns, focusing on the Classical NOT Gate and Quantum Phase Gate (\(R_\phi\)):

Classical NOT Gate Quantum Phase Gate (\(R_\phi\))
Input:
Matrix: \(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\) Matrix: \(\begin{bmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{bmatrix}\)
Action: \(\text{NOT}(|0\rangle) = |1\rangle\), \(\text{NOT}(|1\rangle) = |0\rangle\) Action: \(R_\phi (\alpha|0\rangle + \beta|1\rangle) = \alpha|0\rangle + \beta e^{i\phi} |1\rangle\)

Classical NOT Gate: Matrix: \[ \text{NOT} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

Action: - \(\text{NOT}(|0\rangle) = |1\rangle\) - \(\text{NOT}(|1\rangle) = |0\rangle\)

Quantum Phase Gate (\(R_\phi\)): Matrix: \[ R_\phi = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{bmatrix} \]

Action: \[ R_\phi (\alpha|0\rangle + \beta|1\rangle) = \alpha|0\rangle + \beta e^{i\phi} |1\rangle \]


Universal Gate Sets

Classical Universal Gates: - Definition: A set of gates is universal if it can implement any Boolean function. - Example: AND, OR, NOT (or NAND alone).

Quantum Universal Gates: - Definition: A set of quantum gates is universal if any unitary operation can be approximated to arbitrary accuracy.

Why is Universality Important? - Just like classical computing can be built from a small set of universal gates, quantum computing relies on universal gates to perform any computation. - The ability to approximate any unitary transformation is crucial for building general-purpose quantum computers

Examples (Single-Qubit Case): 1. \(\{H, S, X\}\): Hadamard, Phase, Bit flip 2. \(\{H, R_z(\theta), X\}\): Hadamard, Z-axis rotation, Bit flip 3. \(\{H, R_y(\theta)\}\): Hadamard, Y-axis rotation 4. \(\{X, Y, Z, H\}\): Pauli-X, Y, Z, Hadamard 5. \(\{H, T, X\}\): Hadamard, T gate, Bit flip

Later, we disscued each gate separetely.

Hadamard Gate

The Hadamard gate creates superposition by transforming basis states.

Matrix Representation:
\[ H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \]

Action on Basis States:
\[ H|0\rangle = \frac{|0\rangle + |1\rangle }{\sqrt{2}}, \quad H|1\rangle = \frac{|0\rangle - |1\rangle }{\sqrt{2}} \]


Phase Gate (S Gate) The phase gate introduces a phase shift of \(\pi/2\).

Matrix Representation:
\[ S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \]

Action on Basis States:
\[ S|0\rangle = |0\rangle , \quad S|1\rangle = i|1\rangle \]


Arbitrary Phase Shift: \(R_z(\theta)\) Gate This gate applies an arbitrary phase rotation around the z-axis.

Matrix Representation:
\[ R_z(\theta) = \begin{pmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{pmatrix} \]

Action on Basis States:
\[ R_z(\theta)|0\rangle = e^{-i\theta/2}|0\rangle \]
\[ R_z(\theta)|1\rangle = e^{i\theta/2}|1\rangle \]


\(R_y(\theta)\) Gate The \(R_y(\theta)\) gate represents a rotation by an angle \(\theta\) around the y-axis on the Bloch sphere.

Matrix Representation:
\[ R_y(\theta) = \begin{pmatrix} \cos(\theta/2) & -\sin(\theta/2) \\ \sin(\theta/2) & \cos(\theta/2) \end{pmatrix} \]

Action on Basis States:
\[ R_y(\theta)|0\rangle = \cos(\theta/2)|0\rangle + \sin(\theta/2)|1\rangle \]
\[ R_y(\theta)|1\rangle = -\sin(\theta/2)|0\rangle + \cos(\theta/2)|1\rangle \]


Pauli Gates: X, Y, and Z

Pauli-X (Bit-Flip Gate) Swaps \(|0\rangle\) and \(|1\rangle\), analogous to a classical NOT gate.

Matrix Representation:
\[ X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]

Action on Basis States:
\[ X|0\rangle = |1\rangle , \quad X|1\rangle = |0\rangle \]

Pauli-Y Gate Combines bit-flip and phase-flip operations.

Matrix Representation:
\[ Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \]

Action on Basis States:
\[ Y|0\rangle = i|1\rangle , \quad Y|1\rangle = -i|0\rangle \]

Pauli-Z (Phase-Flip Gate) Leaves \(|0\rangle\) unchanged but flips the phase of \(|1\rangle\).

Matrix Representation:
\[ Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

Action on Basis States:
\[ Z|0\rangle = |0\rangle , \quad Z|1\rangle = -|1\rangle \]


Quantum Measurement: Capturing Information Key Idea - In quantum computing, measurement extracts information from a quantum state, but the process is probabilistic and alters the state. - Classical measurement gives a deterministic outcome without changing the system. - Quantum measurement is inherently probabilistic and collapses the quantum state to a definite outcome.


Nature of Quantum Measurement Physical Interpretation - Measurement corresponds to observing a physical property (e.g., spin direction, polarization). - Before measurement, the system exists in a superposition of states. - Measurement collapses the superposition to one of the possible outcomes.

Mathematical Representation - Measurement is modeled using projection operators \(P_i\).
- Each \(P_i\) corresponds to a possible measurement outcome.
- Probabilities and post-measurement states follow from these operators.


Formal Definition of Quantum Measurement Let \(|ψ\rangle\) be a quantum state and \(\{P_i\}\) a set of projection operators:

  1. Probability of Outcome \(i\):
    \[ p(i) = \langle ψ|P_i|ψ\rangle \]

  2. Post-Measurement State (if Outcome \(i\) Occurs):
    \[ |ψ_i\rangle = \frac{P_i |ψ\rangle }{\sqrt{p(i)}} \]

  3. Projection Operators:
    \[ P_i = |ϕ_i\rangle \langle ϕ_i|, \quad \sum_i P_i = I \]


Example: Measurement in an Orthogonal Basis Initial State: \[ |ψ\rangle = α|0\rangle + β|1\rangle \]

Measurement in Computational Basis (\(|0\rangle , |1\rangle\)): - Projection Operators:
\[ P_0 = |0\rangle \langle 0|, \quad P_1 = |1\rangle \langle 1| \]

  • Probability of Measuring \(|0\rangle\):
    \[ p(0) = |α|^2 \]
    Post-Measurement State: \(|0\rangle\)

  • Probability of Measuring \(|1\rangle\):
    \[ p(1) = |β|^2 \]
    Post-Measurement State: \(|1\rangle\)


Measurement in the \(|+\rangle\) and \(|-\rangle\) Basis Given State:
\[ |ψ\rangle = \sqrt{0.75}|0\rangle + \sqrt{0.25}|1\rangle \]

Overlaps: - \(\langle+|ψ\rangle = \frac{1}{\sqrt{2}}(\sqrt{0.75} + \sqrt{0.25}) \approx 0.96\)
- \(\langle-|ψ\rangle = \frac{1}{\sqrt{2}}(\sqrt{0.75} - \sqrt{0.25}) \approx 0.25\)

Measurement Probabilities: - \(P(|+\rangle ) = |\langle+|ψ\rangle |^2 \approx 0.93\)
- \(P(|-\rangle ) = |\langle-|ψ\rangle |^2 \approx 0.07\)

The Deutsch Problem

Problem: - Given: A function \(f : \{0,1\} \to \{0,1\}\). - Task: Determine if \(f\) is constant or balanced.

Classical Approach: - Requires two function evaluations in the worst case.

Quantum Goal: - Use quantum computing to determine this in a single function call!


Deutsch Algorithm: Key Steps

  1. Input:
    • Two qubits:
      • First qubit: \(|x\rangle\) (input qubit).
      • Second qubit: \(|y\rangle\) (auxiliary qubit, used for function evaluation).
  2. Prepare a Superposition:
    • Apply Hadamard gates to each qubit to create a superposition:
      • First qubit: \(H |0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\).
      • Second qubit: \(H |1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\).
  3. Apply the Oracle \(U_f\):
    • The oracle applies the transformation: \[ U_f |x, y\rangle = |x, y \oplus f(x)\rangle \]
    • This encodes \(f(x)\) in the second qubit.

Encoding Function Behavior via Phase Change

  • Rewrite the second qubit in terms of a phase: \[ U_f (H \otimes H)|0,1\rangle = \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{f(1) \oplus f(0)} |1\rangle)|-\rangle \]
  • The first qubit now contains information about \(f(x)\).

Apply Hadamard Transform (Interference)

  • Applying Hadamard again on the first qubit results in: \[ H \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{f(1) \oplus f(0)} |1\rangle) \]
  • This step extracts global information about \(f(x)\).

Measurement

  • Measure the first qubit:
    • \(|0\rangle\): \(f(x)\) is constant.
    • \(|1\rangle\): \(f(x)\) is balanced.
  • The second qubit is ignored in the measurement.

The Quantum Approach

  • Key Idea:
    • Encode inputs into qubits.
    • Apply a quantum oracle representing \(f(x)\).
  • Quantum Advantage:
    • By preparing a superposition of inputs, evaluate the function on both inputs in a single query.
    • Interference allows extraction of the relevant information.
  • Measurement at the end gives the answer deterministically.

Quantum Circuit for the Deutsch Algorithm

Explanation: 1. Apply Hadamard gates to create superposition. 2. Use the oracle \(U_f\) to introduce a phase based on \(f(x)\). 3. Perform a final Hadamard to extract interference information. 4. Measure the first qubit to determine whether \(f\) is constant or balanced.


Multi-Qubit Systems, Quantum Entanglement, and Higher-Dimensional Extensions

Two-Qubit State Space - A single qubit state is a unit vector in \(\mathbb{C}^2\). - Two-qubit states reside in \(\mathbb{C}^2 \otimes \mathbb{C}^2\) (denoted as \(\mathbb{C}^4\)).

Basis Elements: - \(|00\rangle, |01\rangle, |10\rangle, |11\rangle\).


Entanglement and Physical Interpretation

  • Entanglement:
    • A state \(|\psi\rangle\) is entangled if it cannot be written as a tensor product of two single-qubit states: \[ |\psi\rangle \neq |\psi_1\rangle \otimes |\psi_2\rangle \]
    • Example of an entangled state: \[ |\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \]
    • Example of a non-entangled state: \[ |\psi\rangle = |0\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \]
  • Physical Interpretation:
    • Entangled states exhibit correlations that cannot be explained classically.
    • Measurement outcomes of entangled qubits are correlated, regardless of distance.

Measurement Effects

Entangled State: - Example: \(|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)\). - Measurement on the first qubit: - If \(|0\rangle\): Collapse to \(|00\rangle\). - If \(|1\rangle\): Collapse to \(|11\rangle\). - Conclusion: Measurement on one qubit determines the state of the other.

Separable State: - Example: \(|\psi\rangle = |0\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\). - Measurement on the first qubit: - The first qubit is always \(|0\rangle\). - Measurement on the second qubit: - \(|0\rangle\) or \(|1\rangle\) with equal probability.


Summary of Measurement Effects

Entangled State: - Measurement on one qubit affects the state of the other. - Shows strong correlations.

Separable State: - Measurement on one qubit does not affect the other. - No correlations between outcomes.

Physical Interpretation: - Entanglement exhibits “action at a distance”. - Separable states behave independently.