
Quantum
Computing with
Qiskit

IBM Quantum

What is Qiskit?

Qiskit is an open-source SDK for

working with quantum computers

at the level of extended quantum

circuits, operators, and primitives.

https://github.com/Qiskit/qiskit

https://docs.quantum-computing.ibm.com/

The Qiskit Ecosystem is a

collection of software and

tutorials that build on or extend

Qiskit.

http://qiskit.github.io/ecosystem

IBM Quantum 2

https://github.com/Qiskit/qiskit
https://docs.quantum-computing.ibm.com/
http://qiskit.github.io/ecosystem

Getting started
with Qiskit

IBM Quantum 3

pip install 'qiskit[visualization]'

pip install qiskit-ibm-runtime

To access IBM hardware, set up your credentials

through one of:

• IBM Quantum Platform

• IBM Cloud

https://docs.quantum-computing.ibm.com/start

https://docs.quantum-computing.ibm.com/start

Qiskit workflow

Build

Design and develop quantum

circuits

https://docs.quantum.ibm.com/build

Transpile

Optimize circuits to efficiently

run on hardware

https://docs.quantum.ibm.com/transpile

Verify

Validate and evaluate your

quantum circuits

https://docs.quantum.ibm.com/verify

Run

Execute programs on quantum

hardware via Qiskit Runtime

https://docs.quantum.ibm.com/run

IBM Quantum 4

https://docs.quantum.ibm.com/build
https://docs.quantum.ibm.com/transpile
https://docs.quantum.ibm.com/verify
https://docs.quantum.ibm.com/run

Build

IBM Quantum 5

In the build phase, you create
quantum programs that represent
the problem you are solving.

Build a circuit with Qiskit

The foundation of quantum

programs are quantum circuits,

which consist of operations -

including gates, measurement,

and reset - that manipulate

qubits in the quantum

computer.

IBM Quantum 6

To build a circuit:

• Initialize a register of qubits

• Add the qubits to a circuit

• Perform operations on those

qubits

The output of a quantum
circuit is encapsulated by
primitives

Sampler primitive

Output is a (quasi-)probability

distribution over possible

measurement outcomes

Circuit should include

measurements

Estimator primitive

Output is the expectation value of an

observable (e.g. cost function of an

optimization problem)

Circuit should not include

measurements

IBM Quantum 7

Qiskit includes a library of

standard gates and common

circuits

Standard gates

Standard quantum gates such

as Hadamard, Pauli rotation

gates, CNOT, Quantum Fourier

Transform...

Variational ansatzes

Parameterized quantum

circuits for chemistry and

combinatorial optimization,

include hardware efficient

ansatzes

Benchmarking circuits

Circuits used for measuring

quantum volume and other

benchmarks of quantum

devices

And more!

IBM Quantum 8

Transpile

IBM Quantum 9

In the transpile phase, you rewrite
your circuit into a form that can be
efficiently executed on a quantum
device

Real quantum
devices are
subject to
constraints

Basis gate set

Only a limited set of gates can be

executed directly on the hardware.

Other gates must be rewritten in

terms of these basis gates.

Qubit connectivity

Only certain pairs of qubits can be

directly interacted with each other.

Errors

Each operation has a chance of

error, so circuit optimizations can

greatly affect performance.

10IBM Quantum

Transpiler definitions

Transpilation occurs in a series

of passes, with the output of

one pass becoming the input to

the next.

A transpiler pass defines a

standalone circuit

transformation.

A pass manager is a list of

transpiler passes grouped into

a logical unit.

A staged pass manager is a list

of pass managers, with each

one representing a discrete

stage of a transpilation

pipeline.

IBM Quantum 11

Transpiler stages 1

Initialization

The circuit is prepared for

transpilation.

2

Layout

The abstract qubits of the

circuit are mapped to physical

qubits on the device.

3

Routing

Swap gates are inserted to

enable interactions between

qubits that are not physically

connected.

4

Translation

The gates of the circuit are

translated to the basis gate set

of the device.

5

Optimization

The circuit is rewritten to

minimize its depth or number

of operations in order to

decrease the effect of errors.

6

Scheduling

The precise timing of pulse

sequences is determined

based on hardware

information.

IBM Quantum 12

Transpile a circuit

Qiskit can transpile your circuit

for you with reasonable default

settings.

IBM Quantum 13

To transpile a circuit using Qiskit's

presets:

• Choose which device backend

you want to target

• Create a preset staged pass

manager with your desired

optimization level

• Run the pass manager on the

circuit

You don't need to transpile
your circuits to submit them
to Qiskit Runtime!

But for the best performance, you should
design your own transpilation pipeline.

If you transpile your circuits locally, remember to set
skip_transpilation=True (more on this later).

IBM Quantum 14

Verify

IBM Quantum 15

In the verify phase, you test your
quantum programs by running
them on simulated devices and
exploring their performance under
realistic device noise models.

The cost of simulating

quantum circuits scales

exponentially with the

number of qubits.

Test smaller versions of

your circuit

Modify the circuit so that it

becomes classically

simulable (e.g. a stabilizer

circuit)

IBM Quantum 16

Simulating quantum circuits

Roughly speaking, circuits larger than 50

qubits can't be simulated.

For such large circuits, you can:

Several
simulation tools
are available for
verifying your
quantum
programs

Reference
primitives included
with Qiskit

For exact simulation of small

quantum circuits

Qiskit Aer
primitives

For higher-performance simulation

that can handle larger circuits, or to

incorporate noise models

https://qiskit.org/ecosystem/aer/

Qiskit Aer stabilizer
simulator

For efficient simulation of stabilizer

circuits

17IBM Quantum

Simulation tools

https://qiskit.org/ecosystem/aer/

Use the Estimator primitive

from Qiskit Aer

The Estimator primitive is used

to estimate the expectation

value of an observable.

IBM Quantum 18

To use the Estimator primitive,

pass it:

• A circuit without measurements

• An observable

Measure
expectation
value of ZZ

Simulate noise

Real quantum devices are

subject to errors. These errors

vary across different devices,

different qubits and

connections on the same

device, and time.

In the near term, a variety of

error-mitigation techniques

help us counter the effects of

noise.

In the long term, we will use

error-correction to build fault-

tolerant quantum computers.

IBM Quantum 19

Calibration data for ibm_brisbane

9am ET, Nov 16, 2023

https://quantum-computing.ibm.com/

https://quantum-computing.ibm.com/

Build noise models with Qiskit Aer

You can use Qiskit Aer to build

and simulate noise models.

IBM Quantum 20

You can initialize a noise model

with parameters set from the

calibration data of a real backend.

You can also build your own

custom noise models from

scratch.

Depolarizing error:

Stabilizer circuits can be

simulated efficiently

Stabilizer circuits are a special

restricted class of circuits that

can be efficiently simulated

classically.

IBM Quantum 21

To simulate a stabilizer circuit, use

a Qiskit Aer primitive with the

"stabilizer" simulation method.

Stabilizer circuit if every 𝜃 is an integer multiple of 𝜋/2

Run

IBM Quantum 22

In the run phase, you send your
quantum program to be executed
on a quantum system.

Anatomy of a quantum

computing service

IBM Quantum 23

User

Cloud service
(Qiskit Runtime)

Server in
laboratory

Control
electronics

Quantum
processor

Quantum
programming

language

Pulse sequences

Run a circuit on quantum

hardware using Qiskit Runtime

Running a circuit on a real

quantum device is similar to

running it on a simulator. The

main difference is that you use

a Qiskit Runtime primitive and

choose the hardware backend

you want to use.

IBM Quantum 24

To run a circuit on quantum

hardware:

• Initialize the Qiskit Runtime

service (requires setting up

account credentials

beforehand)

• Initialize a Qiskit Runtime

primitive

• Invoke the primitive with

your circuit

Qiskit Runtime sessions

A session allows a collection of jobs to

be grouped and jointly scheduled by

the Qiskit Runtime service, facilitating

iterative use of quantum computers

without incurring queuing delays on

each iteration.

Jobs within an active session

take priority over other queued

jobs.

A session becomes active

when its first job starts running.

A session stays active until one

of the following happens:

• Its maximum timeout value

is reached.

• Its interactive timeout value

is reached. In this case the

session is deactivated but

can be resumed if another

session job starts running.

• The session is closed or

cancelled.

Note: The queuing time does

not decrease for the first job

submitted within a session.

IBM Quantum 25

IBM Quantum 26

Qiskit Runtime sessions

Run jobs in a session

A session is typically created as

a context manager using the

with statement. The context

manager takes care of closing

the session when you're done.

IBM Quantum 27

To run jobs in a session:

• Initialize the Qiskit Runtime

service

• Initialize a session as a

context manager, specifying

the backend

• Initialize a Qiskit Runtime

primitive within the session

• Invoke the primitive as

usual

Several options
are available to
customize the
behavior of Qiskit
Runtime
primitives

Shots

The number of measurement

shots used by the primitives to

compute their results. Increasing

this value lowers statistical error,

but increases running time.

Runtime
transpilation

The primitives may perform runtime

transpilation to optimize circuits,

with the degree of optimization

controlled by an optimization level

option. The optimization level you

choose affects the transpilation

strategy, with higher levels invoking

more expensive or aggressive

optimizations.

Error mitigation

Several error mitigation techniques

are available to help you counter the

effects of device noise. These

techniques incur computational

overhead and should be evaluated

case-by-case.

28IBM Quantum

Customize Qiskit Runtime

behavior

Configuring runtime transpilation

The primitives expose preset

transpilation configurations via

the optimization_level

option.

You can also elect to

disable runtime transpilation

using the

skip_transpilation

option.

IBM Quantum 29

Optimization level Effect

0

No optimization: typically used for
hardware characterization or debugging
• Basis translation
• Layout (as specified)
• Routing (stochastic swaps)

1
[Default]

Light optimization:
• Layout (trivial → vf2 → SabreLayout if

routing is required)
• Routing (SabreSWAPs if needed)
• 1Q gate optimization
• Error suppression: dynamical decoupling

Configuring error mitigation

The primitives expose error

mitigation via the

resilience_level option.

Higher resilience levels incur a

greater cost.

IBM Quantum 30

Resilience level Definition Estimator Sampler

0 No mitigation

1
[Default]

Minimal mitigation costs:
Mitigate error associated
with readout errors

Twirled Readout Error
eXtinction (TREX)

Matrix-free Measurement
Mitigation (M3)

2

Medium mitigation costs.
Typically reduces bias in
estimators, but is not
guaranteed to be zero-
bias.

Zero Noise Extrapolation
(ZNE)

3

Heavy mitigation with
layer sampling.
Theoretically expected to
deliver zero-bias
estimators.

Probabilistic Error
Cancellation (PEC)

Links IBM Quantum
Documentation

https://docs.quantum-computing.ibm.com/

Access the documentation for Qiskit and IBM

Quantum services.

IBM Quantum
Learning

https://learning.quantum-computing.ibm.com/

Learn the basics of quantum computing, and how

to use IBM Quantum services and systems to

solve real-world problems.

Qiskit YouTube https://www.youtube.com/qiskit

Join us for engaging lectures, tips & tricks,

tutorials, community updates and access to

exclusive Qiskit content!

IBM Quantum 31

https://docs.quantum-computing.ibm.com/
https://learning.quantum-computing.ibm.com/
https://www.youtube.com/qiskit

	Slide 1: Quantum Computing with Qiskit
	Slide 2: What is Qiskit?
	Slide 3: Getting started with Qiskit
	Slide 4: Qiskit workflow
	Slide 5: Build
	Slide 6: Build a circuit with Qiskit
	Slide 7: The output of a quantum circuit is encapsulated by primitives
	Slide 8: Qiskit includes a library of standard gates and common circuits
	Slide 9: Transpile
	Slide 10
	Slide 11: Transpiler definitions
	Slide 12: Transpiler stages
	Slide 13: Transpile a circuit
	Slide 14: You don't need to transpile your circuits to submit them to Qiskit Runtime! But for the best performance, you should design your own transpilation pipeline. If you transpile your circuits locally, remember to set skip_transpilation=True (more
	Slide 15: Verify
	Slide 16: The cost of simulating quantum circuits scales exponentially with the number of qubits.
	Slide 17: Simulation tools
	Slide 18: Use the Estimator primitive from Qiskit Aer
	Slide 19: Simulate noise
	Slide 20: Build noise models with Qiskit Aer
	Slide 21: Stabilizer circuits can be simulated efficiently
	Slide 22: Run
	Slide 23: Anatomy of a quantum computing service
	Slide 24: Run a circuit on quantum hardware using Qiskit Runtime
	Slide 25: A session allows a collection of jobs to be grouped and jointly scheduled by the Qiskit Runtime service, facilitating iterative use of quantum computers without incurring queuing delays on each iteration.
	Slide 26
	Slide 27: Run jobs in a session
	Slide 28: Customize Qiskit Runtime behavior
	Slide 29: Configuring runtime transpilation
	Slide 30: Configuring error mitigation
	Slide 31: Links

