Quantum
Computing witn
QISKIt

uuuuuuuuuu

What Is Oiskit?

IBM Quantum

Qiskit is an open-source SDK for

working with quantu

M computers

at the level of extended quantum

CIrcults, operators, a

nd primitives.

https://github.com/Qiskit/qgiskit

https://docs.quantum-computing.ibm.com/

The Qiskit Ecosystem is a
collection ot software and

tutorials that build on or extend
Qiskit.

http://qiskit.github.io/ecosystem

https://github.com/Qiskit/qiskit
https://docs.quantum-computing.ibm.com/
http://qiskit.github.io/ecosystem

Getting started
with Qiskit

=

p1p 1nstall 'giskit|[visualization]'
D1p 1nstall giskit-ibm-runtime

To access IBM hardware, set up your credentials
through one of:
« IBM Quantum Platform
« IBM Cloud

https://docs.quantum-computing.ibm.com/start

IBM Quantum

https://docs.quantum-computing.ibm.com/start

Qi1skit worktlow

Build

Design and develop quantum
CIFCulIts

https://docs.quantum.ibm.com/build

IBM Quantum

Transpile

Optimize circuits to efficiently
run on hardware

https://docs.quantum.ibm.com/transpile

Verity

Validate and evaluate your
gquantum circults

https://docs.quantum.ibm.com/verity

RUN

Execute programs on guantum
hardware via Qiskit Runtime

https://docs.quantum.ibm.com/run

https://docs.quantum.ibm.com/build
https://docs.quantum.ibm.com/transpile
https://docs.quantum.ibm.com/verify
https://docs.quantum.ibm.com/run

Build

uuuuuuuuuu

[n the bulld phase, you create

[

quantu

e pro

M programs tha

represent

olem you are so

VIing.

Build a circuit with Qiskit

The foundation of quantum To build a circuit:
programs are quantum circuits, o _ _ _
which consist of operations - « Initialize a register ot qubits from qiskit import QuantumCircult, QuantumRegister
Including gates, measurement,
and reset - that manipulate » Add the qubits to a circuit qubits = QuantumRegister(2, name="q")
qubits in the quantum circuit = QuantumCircuit(qubits)
computer. * Perform operations on those
qubits g0, gl = qubits

circuit.h(qg0Q)
circuit.cx(qg@, ql)
circuit.measure all()

circuit.draw("mpl")
o — A —

i ——

Meas

IBM Quantum

The output of a quantum Sampler primitive Estimator primitive
circuit 1s encapsulated by

primitives /\ [TZET

Output is a (quasi-)probability Output is the expectation value of an
distribution over possible observable (e.g. cost function of an
measurement outcomes optimization problem)

Circuit should include Circuit should not include
measurements measurements

go — H

Qo — H

i

di —

Meas

IBM Quantum 7

Qiskit includes a library ot
standard gates and common
CIrCulIts

IBM Quantum

Standard quantum gates such
as Hadamard, Pauli rotation
gates, CNOT, Quantum Fourier
Transtorm...

Parameterized quantum
circuits for chemistry and
combinatorial optimization,
Include hardware efficient
ansatzes

Circuits used for measuring
guantum volume and other
benchmarks of quantum
devices

Transpile

[n the transpile phase, you rewrite
vOuUr Ccircult into a torm that can pe
efficiently executed on a quantum
device

uuuuuuuuuu

Real quantum
devices are
subject to
constraints

IBM Quantum

3asIs date set

Only a limited set of gates can be

executed directly on the hardware.

Other gates must be rewritten in
terms of these basis gates.

Qubit connectivity

Only certain pairs of qubits can be
directly interacted with each other.

—rrors

Each operation has a chance of
error, so circuit optimizations can
greatly affect performance.

J

10

Transpiler definitions

Transpilation occurs in a series A transpiler pass defines a A pass manager is a list of A staged pass manager is a list
of passes, with the output of standalone circult transpiler passes grouped into of pass managers, with each
one pass becoming the input to transtormation. a logical unit. one representing a discrete
the next.

stage of a transpilation
pipeline.

IBM Quantum 11

Transpiler stages

IBM Quantum

1
Initialization

The circult is prepared for
transpilation.

/
Translation

The gates of the circuit are
translated to the basis gate set
of the device.

2
Layout

The abstract qubits of the

circuit are mapped to physical
qubits on the device.

5
Optimization

The circult is rewritten to
minimize its depth or number
of operations in order to
decrease the effect of errors.

3
Routing

Swap gates are inserted to
enable interactions between
qubits that are not physically
connected.

6
Scheduling

The precise timing of pulse
sequences Is determined
based on hardware
Information.

12

Transpile a circult

Qiskit can transpile your circuit To transpile a circuit using Qiskit's from giskit import QuantumCircult, QuantumReglster

. from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
for you with reasonable default presets: from giskit_ibm_runtime import QiskitRuntimeService
settings.

. . quitS = QuantumRegister(zlr name:uqu)
» Choose which device backend CiTCUlt = QuaNtuMCLreuit(qubite)

you want to target _
gd, ql = qubits

circuit.h(q@)

 Create a preset staged pass SR A G
manager with your desired service = QiskitRuntimeService()
optimization level backend = service.backend("ibm_brisbane")

pass_manager = generate_preset_pass_manager(l, backend=backend)
transpiled = pass_manager.run(circuit)

* Run the pass manager on the
circult

transpiled.draw("mpl", idle_wires=False)

Global Phase: 7mn/4

Qo » O

g, ~ 1

IBM Quantum

You don't need to transpile
yOur circuits to submit them
to Qiskit Runtime!

But for the best pertformance, you should
design your own transpilation pipeline.

It you transpile you

- clrcults local

skip_transpila-

uuuuuuuuuu

"1on=True (

y, remembe

Mmore on this

10 set

ater).

Verity

[n the verity phase, you test your
gquantum programs by running
them on simulated devices and
exploring their performance under
realistic device noise models.

uuuuuuuuuu

Simulating quantum circuits

The cost of simulating
gquantum circuits scales
exponentially with the
number ot qublits.

IBM Quantu m

qubits can't be simulated.

-or such large circuits, you can:

Roughly speaking, circuits larger than 50

Test smaller versions of
your circult

Modity the circult so that it

becomes classically
simulable (e.g. a stabilizer
circuit)

16

Simulation tools

Seve

S
d

ver

q

IBM Quantum

Mmu

dl

d

'lon tools

e avallable tor

VING your

uantum
programs

Reference

primitives included
with Qiskit

For exact simulation of small
gquantum circuits

Qiskit Aer
primitives

For higher-performance simulation
that can handle larger circuits, or to
incorporate noise models

https://qiskit.org/ecosystem/aer/

Qiskit Aer stabilizer
simulator

For efficient simulation of stabilizer
Clrcuits

17

https://qiskit.org/ecosystem/aer/

Use the Estimator primitive
from Qiskit Aer

The Estimator primitive Is used
to estimate the expectation
value of an observable.

IBM Quantum

To use the Estimator primitive,

pass It:

A circuilt without measurements

An observable

~

Measure
expectation
value of ZZ

~

from giskit import QuantumCircuit, QuantumRegister
from giskit.quantum_info import SparsePauliOp
from giskit_aer.primitives import Estimator

qubits = QuantumRegister(2, name="q")
circuit = QuantumCircuit(qubits)

g®, ql = qubits

circuit.h(qg®Q)

circuit.cx(q@, ql)

no measurements because we're using the Estimator primitive

obsexrvable = SparsePauliOp("ZZ")

estimator = Estimator()

job = estimator.run(circuit, observable)
exact_value = job.result().values[@]
print(exact_value) # prints 1.0

18

Simulate noise

Real quantum devices are
subject to errors. These errors
vary across different devices,
different qubits and
connections on the same
device, and time.

In the near term, a variety of
error-mitigation techniques
help us counter the effects of
noise.

In the long term, we will use

error-correction to build fault-
tolerant quantum computers.

IBM Quantum

Quhit:

Readout assignment error -

Calibration data for ibm brisbane
9am ET, Nov 16, 2023
https://quantum-computing.ibm.com/

Median 1.370e-2 Connection Median 7.955e-3

ECR error "

. ?)¢ ¢
8-2-0-0-0-0-0-0-0-0-0-8-0-B

19

https://quantum-computing.ibm.com/

Build noise models with Qiskit Aer

from giskit_aer.noise import NoiseModel
from giskit_aer.primitives import Estimator
from giskit_ibm_runtime import QiskitRuntimeService

You can use Qiskit Aer to build You can initialize a noise model service = QiskitRuntimeService()

and simulate noise models. with parameters set from the backend = service.backend("ibm_brisbane")
calibration data of a real backend noise_model = NoiseModel.from_backend(backend)

estimator = Estimator(backend_options=dict(noise_model=noise_model))
You can also build your own

custom noise models from

scratch.
Depolarizing error: from giskit_aer.noise import ReadoutError, depolarizing_error
I noise_model = NoiseModel()
E(p) — (1 _p)p - p cx_depolarizing_prob = 0.02
2" bit_flip_prob = 0.05

nolse_model.add_all_qubit_quantum_erroxr(
depolarizing_error(cx_depolarizing_prob, 2), ["cx"]
)
noise_model.add_all_qubit_readout_error (
ReadoutError(
[
[1 - bit_flip_prob, bit_flip_prob],
[bit_flip_prob, 1 - bit_flip_prob],

IBM Quantum

Stabilizer circuits can be
simulated efficiently

Stabilizer circuits are a special To simulate a stabilizer circuit, use
restricted class of circuits that a Qiskit Aer primitive with the

can be efficiently simulated "stabilizer” simulation method.
classically.

dos

doe

do7

s & 8 8 8 2 8 8 8 s 8 & & s & & s 2 8 8 8 2 &8 8 8 PR s s s 2 8 s 8 5 8 8 5 5 8 & 2 8 8 8 3 8 s 3 =2 s 8 8 85 8 8 2 3 8 s 8 5 5 5 58 85 5 2 s 8
g2 FFF PSR E R R EEEFEE SRS EE S E SR P E R EEE R E PP R P EEE PR R R R EREEE R ERE RS EEE R RS R E s 2o o8 o8 o8 o8 o5

dos

s = &
F N A

d99 + +

Stabilizer circuit if every 8 is an integer multiple of /2 estimator = Estimator(backend_options=dict(method="stabilizer"))

IBM Quantum

21

~RUN

[n the run phase, you send your
guantum program to be executed
ONn a guantum system.

uuuuuuuuuu

Anatomy of a quantum
computing service

=

r) Quantum
programming
language

Y/

User

IBM Quantum

noo N
Y

Cloud service
(Qiskit Runtime)

ANANAAN
ANANAN
AANNANAAN
ANANAN

Pulse sequences

Y

Server In
laboratory

{

Control
electronics

Quantum

processor
23

Run a circuit on quantum
hardware using Qiskit Runtime

Running a circuit on a real
quantum device Is similar to
running it on a simulator. The
main difference is that you use
a Qiskit Runtime primitive and
choose the hardware backend
you want to use.

IBM Quantum

To run a circuit on quantum
hardware:

o Initialize the Qiskit Runtime
service (requires setting up

account credentials
beforehand)

* Initialize a Qiskit Runtime
primitive

* Invoke the primitive with
your circuit

import numpy as np

from qiskit.circuit.library import IQP

from giskit.quantum_info import SparsePauliOp, random_hexrmitian
from giskit_ibm_runtime import Estimator, QiskitRuntimeService

Initialize Qiskit Runtime service
service = QiskitRuntimeService()
backend = service.backend("ibm_brisbane")

Create a circuit and observable

n_qubits = 127

mat = np.real(random_hermitian(n_qubits, seed=1234))
circuit = IQP(mat)

observable = SparsePauliOp("Z" * n_qubits)

Initialize the Estimator primitive
estimator = Estimator(backend=backend)

Invoke the Estimator and get results
job = estimator.run(circuit, obsexrvable)
result = job.result()

24

Qiskit Runtime sessions

A session allows a collection ot jobs to
be grouped and jointly scheduled by

the Qiskit Runt
iterative use ot

Ime service, tfacilitating
quantum computers

without incurring queuing delays on

each Iteration.

Session | Job 1

IBM Quantum

Job 2
Job 3
Job 4

Jobs within an active session
take priority over other queued
jobs.

A session stays active until one

of the tollowing happens:

e Jts maximum timeout value
IS reached.

« Jtsinteractive timeout value
Is reached. In this case the
session Is deactivated but
can be resumed if another
session job starts running.

 The sessionis closed or
cancelled.

A session becomes active
when its first job starts running.

Note: The queuing time does
not decrease for the first job
submitted within a session.

25

Qiskit Runtime sessions

Sessions for iterative job execution

Time (8 hrs max)

Session
Estimator Idle Estimator Idle Estimator Idle Sampler
Job O Time Job 1 Time Job 2 Time Job 3
<[> </> <[> <[>
N 2N % %
Classical Classical Classical

post-processing

IBM Quantum

post-processing

post-processing

26

Run jobs In a session

A session is typically created as
a context manager using the
with statement. The context
manager takes care of closing
the session when you're done.

IBM Quantum

To run jobs in a session:

Initialize the Qiskit Runtime
service

 TInitialize a session as a
context manager, specitying
the backend

 Initialize a Qiskit Runtime
primitive within the session

* Invoke the primitive as
usual

from qiskit_ibm_runtime import Estimator, QiskitRuntimeService, Session

service = QiskitRuntimeService()
backend = service.backend("ibm_brisbane")

with Session(backend=backend):
estimator = Estimator()
invoke the Estimator as usual

27

Customize Qiskit Runtime
behavior

Several options

d
C

‘e avallable to

Ustomize the

nehavior of Qiskit
Runtime

primitives

IBM Quantum

Shots

The number of measurement
shots used by the primitives to
compute their results. Increasing
this value lowers statistical error,
but Increases running time.

Runtime
transpilation

The primitives may perform runtime
transpilation to optimize circuits,
with the degree of optimization
controlled by an optimization level
option. The optimization level you
choose affects the transpilation
strategy, with higher levels invoking
more expensive or aggressive
optimizations.

Crror mitigation

Several error mitigation technigques
are available to help you counter the
effects of device noise. These
techniques incur computational
overhead and should be evaluated
case-by-case.

28

Configuring runtime transpilation

The primitives expose preset
transpilation configurations via
the optimization_level
option.

You can also elect to

disable runtime transpilation
using the
skip_transpilation
option.

IBM Quantum

Optimization level

Effect

No optimization: typically used for
hardware characterization or debugging
e Basis translation

* Layout (as specified)

« Routing (stochastic swaps)

1
[Default]

Light optimization:

« Layout (trivial = vf2 = SabrelLayout if
routing is required)

« Routing (SabreSWAPs if needed)

« 10Q gate optimization

* Error suppression: dynamical decoupling

29

Configuring error mitigation

The primitives expose error
mitigation via the
resilience_level option.

Higher resilience levels incur a
greater cost.

IBM Quantum

Resilience level

Definition

Estimator

Sampler

No mitigation

1
[Default]

Minimal mitigation costs:
Mitigate error associated
with readout errors

Twirled Readout Error
eXtinction (TREX)

Matrix-free Measurement
Mitigation (M3)

Medium mitigation costs.
Typically reduces bias in
estimators, but is not
guaranteed to be zero-
bias.

Zero Noise Extrapolation
(ZNE)

Heavy mitigation with
layer sampling.
Theoretically expected to
deliver zero-bias
estimators.

Probabilistic Error
Cancellation (PEC)

30

Links [BM
DOC!

https://docs.quantum-computing.ibm.com/

Access the documentation for Qiskit and IBM
Quantum services.

https://learning.quantum-computing.ibm.com/

Learn the basics of qguantum computing, and how
to use IBM Quantum services and systems to
solve real-world problems.

IBM Quantum

https://www.youtube.com/qgiskit

Join us for engaging lectures, tips & tricks,
tutorials, community updates and access to
exclusive Qiskit content!

31

https://docs.quantum-computing.ibm.com/
https://learning.quantum-computing.ibm.com/
https://www.youtube.com/qiskit

	Slide 1: Quantum Computing with Qiskit
	Slide 2: What is Qiskit?
	Slide 3: Getting started with Qiskit
	Slide 4: Qiskit workflow
	Slide 5: Build
	Slide 6: Build a circuit with Qiskit
	Slide 7: The output of a quantum circuit is encapsulated by primitives
	Slide 8: Qiskit includes a library of standard gates and common circuits
	Slide 9: Transpile
	Slide 10
	Slide 11: Transpiler definitions
	Slide 12: Transpiler stages
	Slide 13: Transpile a circuit
	Slide 14: You don't need to transpile your circuits to submit them to Qiskit Runtime! But for the best performance, you should design your own transpilation pipeline. If you transpile your circuits locally, remember to set skip_transpilation=True (more
	Slide 15: Verify
	Slide 16: The cost of simulating quantum circuits scales exponentially with the number of qubits.
	Slide 17: Simulation tools
	Slide 18: Use the Estimator primitive from Qiskit Aer
	Slide 19: Simulate noise
	Slide 20: Build noise models with Qiskit Aer
	Slide 21: Stabilizer circuits can be simulated efficiently
	Slide 22: Run
	Slide 23: Anatomy of a quantum computing service
	Slide 24: Run a circuit on quantum hardware using Qiskit Runtime
	Slide 25: A session allows a collection of jobs to be grouped and jointly scheduled by the Qiskit Runtime service, facilitating iterative use of quantum computers without incurring queuing delays on each iteration.
	Slide 26
	Slide 27: Run jobs in a session
	Slide 28: Customize Qiskit Runtime behavior
	Slide 29: Configuring runtime transpilation
	Slide 30: Configuring error mitigation
	Slide 31: Links

